jueves, 28 de enero de 2010

Manual Renault Logan

Les dejo el manual de taller y despiece del Renault Logan, que originalmente es un auto que proviene de Dacia, quien es el creador.

Espero que les sea de utilidad.


Manual Renault Logan
DESCARGAR MANUAL


LINK ACTUALIZADO 26/04/2012

Manual Renault Logan


martes, 26 de enero de 2010

¿Que hacer si atropello a alguien?

Resumen

Si uno atropella a un peatón y éste muere hay que esperar a que el tránsito llegue a levantar el croquis; pero a veces dichos croquis son modificados para inculparnos más.
Si ud cree que el croquis no corresponde con la escena original, aunque le parezca extraño, *NO SE NIEGUE A FIRMARLO*, pues ante su negativa, un testigo (por lo general alguien conocido) firma el croquis, que no se podrá cambiar después.

Lo correcto es firmarlo y en la parte que dice OBSERVACIONES escribir que usted no está de acuerdo, que el croquis esta cambiado, etc. No le pida permiso ni le diga al agente de tránsito que usted va a escribir en Observaciones, pues él lo puede intimidar con cosas como irrespeto a la
autoridad etc.
Asi que hágalo sin decir nada a él, es su derecho.

Necesitas

Si tiene la posibilidad de tomar fotos, hágalo! UTILICE LA CAMARA DE SU CELULAR Si el peatón queda herido lo ideal es esperar a que llegue una ambulancia, pero uno debe hacer un juicio y valorar el estado
de la persona, porque si la persona muere mientras la ambulancia llega, usted va a ser inculpado por no prestar ayuda. De manera que si usted cree que la persona necesita ayuda inmediata y la ambulancia no llega, usted debe llevarla a la clínica más cercana.

Si en este caso la persona llegare a morir en su automóvil, no se detenga en ningún comisaria o estación de policía, pues usted puede ser inculpado por homicidio y el cuerpo de la persona se constituye en prueba.
Usted debe seguir hasta el hospital o clínica y allí los médicos determinarán que la persona murió en un accidente de tránsito; o aún mejor, podría llegar con vida.

A su vez, al hospital llegará un policía de tránsito que en ese momento se convierte en Policía Judicial (ya que él recoge todas las pruebas y testimonios que va a entregar a un fiscal) y le pedirá a usted, el
conductor(a), una versión libre de lo sucedido.

Pasos

POR NINGUNA RAZON DIGA QUE LE DIÓ, LO ATROPELLÓ, LO GOLPE, etc., porque usando esa Terminología usted estaría aceptando la culpa y dándole la razón a los que lo quieren estafar. Diga que usted iba por la vía 'x' a velocidad 'x' y la Persona se atravesó y se presentó un ACCIDENTE.

El policía de tránsito le va a preguntar con qué parte del carro golpeó al peatón, no caiga en su trampa, diga que la persona se atravesó y ella fue quien golpeó el carro en la parte de adelante....NO responda que UD
LO GOLPEO CON 'X' PARTE, porque esta aceptando la responsabilidad

El próximo paso es que a usted lo lleven a Medicina Legal, y le hagan 2 pruebas que son muy diferentes: prueba de embriaguez y prueba de sangre.

La de embriaguez es en la que lo ponen a caminar el línea recta, mirar fijamente un dedo, etc. Si usted da negativo(a) en esta prueba NO deje que le hagan la prueba de sangre; usted no está obligado y esta última
puede salir positiva así usted este sobrio. Esto debido a que el alcohol permanece por algunos días en la sangre.

Así que si usted ha bebido licor en los días anteriores la prueba puede salir positiva así usted esté en sus cabales. Pero si la prueba de embriaguez da positiva usted no se puede oponer a la de sangre, pues es
para confirmar.

En este caso NO ACEPTE jeringas que no sean abiertas delante suyo. De aquí usted será llevado a una lugar de resguardo de la fiscalía, y será detenido Por 72 horas y su carro será llevado al corralón.

Importante

Si usted sospecha que está siendo víctima de un montaje dígalo, pida que se investigue, contacte a un abogado; no deje que estos delincuentes se salgan con la suya. Por lo general estas personas demandan a los 8-10 días del accidente, y cuando se presentan demandas tan rápido... sospeche!!, el 90% de ellas son arregladas, y oscilan entre los valores de $80 a $390 mil pesos o mas, amparados bajo dictámenes por Peritos de Medicinal legal que son cómplices y dicen que la persona tiene incapacidad de 9 o 10 meses cuando en realidad la incapacidad es de 20 días, y el tiempo de incapacidad es determinante para que el juez dicte el precio que hay que pagar.

Uno puede pedir un segundo aval de otro perito si tiene sospechas y salvar de esta manera su patrimonio. Si un segundo perito difiere enormemente del primero, éste último quedará al descubierto y pagará con
cárcel y perderá su tarjeta profesional, y se descubrirá que usted ha sido víctima de un montaje.

No se trata de pensar que los verdaderos accidentes no ocurren, pero es bueno estar informados de todo esto ya que la estadística es grande.

Ojala nunca tengan necesidad de esto, pero es importantes estar prevenidos.
A.R.

Así que, por favor, tomemos precauciones y cuidémonos. Háganse asesorar De su seguro y recuerde no caer en el juego de palabras que pueden terminar inculpándolo así usted no tenga la culpa'.


fuente:http://wiki.biensimple.com/display/tiempolibre/Que+hacer+en+caso+de+atropellar+a+alguien
Resumen

Si uno atropella a un peatón y éste muere hay que esperar a que el tránsito llegue a levantar el croquis; pero a veces dichos croquis son modificados para inculparnos más.
Si ud cree que el croquis no corresponde con la escena original, aunque le parezca extraño, *NO SE NIEGUE A FIRMARLO*, pues ante su negativa, un testigo (por lo general alguien conocido) firma el croquis, que no se podrá cambiar después.

Lo correcto es firmarlo y en la parte que dice OBSERVACIONES escribir que usted no está de acuerdo, que el croquis esta cambiado, etc. No le pida permiso ni le diga al agente de tránsito que usted va a escribir en Observaciones, pues él lo puede intimidar con cosas como irrespeto a la
autoridad etc.
Asi que hágalo sin decir nada a él, es su derecho.

Necesitas

Si tiene la posibilidad de tomar fotos, hágalo! UTILICE LA CAMARA DE SU CELULAR Si el peatón queda herido lo ideal es esperar a que llegue una ambulancia, pero uno debe hacer un juicio y valorar el estado
de la persona, porque si la persona muere mientras la ambulancia llega, usted va a ser inculpado por no prestar ayuda. De manera que si usted cree que la persona necesita ayuda inmediata y la ambulancia no llega, usted debe llevarla a la clínica más cercana.

Si en este caso la persona llegare a morir en su automóvil, no se detenga en ningún comisaria o estación de policía, pues usted puede ser inculpado por homicidio y el cuerpo de la persona se constituye en prueba.
Usted debe seguir hasta el hospital o clínica y allí los médicos determinarán que la persona murió en un accidente de tránsito; o aún mejor, podría llegar con vida.

A su vez, al hospital llegará un policía de tránsito que en ese momento se convierte en Policía Judicial (ya que él recoge todas las pruebas y testimonios que va a entregar a un fiscal) y le pedirá a usted, el
conductor(a), una versión libre de lo sucedido.

Pasos

POR NINGUNA RAZON DIGA QUE LE DIÓ, LO ATROPELLÓ, LO GOLPE, etc., porque usando esa Terminología usted estaría aceptando la culpa y dándole la razón a los que lo quieren estafar. Diga que usted iba por la vía 'x' a velocidad 'x' y la Persona se atravesó y se presentó un ACCIDENTE.

El policía de tránsito le va a preguntar con qué parte del carro golpeó al peatón, no caiga en su trampa, diga que la persona se atravesó y ella fue quien golpeó el carro en la parte de adelante....NO responda que UD
LO GOLPEO CON 'X' PARTE, porque esta aceptando la responsabilidad

El próximo paso es que a usted lo lleven a Medicina Legal, y le hagan 2 pruebas que son muy diferentes: prueba de embriaguez y prueba de sangre.

La de embriaguez es en la que lo ponen a caminar el línea recta, mirar fijamente un dedo, etc. Si usted da negativo(a) en esta prueba NO deje que le hagan la prueba de sangre; usted no está obligado y esta última
puede salir positiva así usted este sobrio. Esto debido a que el alcohol permanece por algunos días en la sangre.

Así que si usted ha bebido licor en los días anteriores la prueba puede salir positiva así usted esté en sus cabales. Pero si la prueba de embriaguez da positiva usted no se puede oponer a la de sangre, pues es
para confirmar.

En este caso NO ACEPTE jeringas que no sean abiertas delante suyo. De aquí usted será llevado a una lugar de resguardo de la fiscalía, y será detenido Por 72 horas y su carro será llevado al corralón.

Importante

Si usted sospecha que está siendo víctima de un montaje dígalo, pida que se investigue, contacte a un abogado; no deje que estos delincuentes se salgan con la suya. Por lo general estas personas demandan a los 8-10 días del accidente, y cuando se presentan demandas tan rápido... sospeche!!, el 90% de ellas son arregladas, y oscilan entre los valores de $80 a $390 mil pesos o mas, amparados bajo dictámenes por Peritos de Medicinal legal que son cómplices y dicen que la persona tiene incapacidad de 9 o 10 meses cuando en realidad la incapacidad es de 20 días, y el tiempo de incapacidad es determinante para que el juez dicte el precio que hay que pagar.

Uno puede pedir un segundo aval de otro perito si tiene sospechas y salvar de esta manera su patrimonio. Si un segundo perito difiere enormemente del primero, éste último quedará al descubierto y pagará con
cárcel y perderá su tarjeta profesional, y se descubrirá que usted ha sido víctima de un montaje.

No se trata de pensar que los verdaderos accidentes no ocurren, pero es bueno estar informados de todo esto ya que la estadística es grande.

Ojala nunca tengan necesidad de esto, pero es importantes estar prevenidos.
A.R.

Así que, por favor, tomemos precauciones y cuidémonos. Háganse asesorar De su seguro y recuerde no caer en el juego de palabras que pueden terminar inculpándolo así usted no tenga la culpa'.

Pasos a seguir en un Accidente de Tránsito.

Aquí encontrara una breve descripción de los pasos administrativos y trámites que debería seguir en caso de haber tenido un accidente de tránsito, que lamentablemente en verano son más comunes de lo que pensamos...

En caso de Automóviles particulares, Motos, Remise, Taxi, etc,.

  1. Denuncia administrativa en su aseguradora: Realizarla dentro de las 48 Hs. desde el momento del accidente. Básicamente se trata de que Ud. , al presentarse en su aseguradora, le describa los hechos para que puedan responder en caso de necesitar cubrir daños que Ud. haya provocado. Siempre debe realizar la denuncia administrativa en su compañía por más insignificante que sea el accidente. Es por su bien y seguridad. Ademas debera darle a su compañia todos los datos del tercero.

  2. Datos: Recuerde que debe tener la mayor cantidad de datos de todos los involucrados para ubicarlos posteriormente y poder cobrar los daños provocados a su vehículo. (Ver documentación mas abajo)

lunes, 11 de enero de 2010

Pistones



Se denomina pistón a uno de los elementos básicos del motor de combustión interna.
Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.
A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.
Puede formar parte de bombas, compresores y motores. Se construye normalmente en aleación de aluminio.

Lubricacion del motor




Bomba de Aceite y Válvula Reguladora
El flujo de aceite hacia los descansos y puños del cigüeñal debe ser constante. Para ello se utliza una bomba de aceite que sumistra caudal. El rendimiento de la bomba de lubricantes se controla midiendo los litros por minuto que desplaza. Como la bomba gira relacionada con el motor, a mayores revoluciones, mayor caudal.
Para controlar la variación constante de presión, se utiliza una válvula reguladora de presión. Esta se encuentra formada por un émbolo y un resorte. Se abre cuando el caudal de aceite suministrado por la bomba genera presión suficiente para comprimir el resorte de la válvula reguladora y parte del caudal es derivado hacia el tubo de succión de la bomba de aceite.


La válvula es regulable. Permite establecer la presión mínima y máxima del aceite, dentro del circuito de lubricación. Para aumentar la presión de aceite de lubricación se requiere desmontar el perno de sujeción de la válvula y quitar golillas de regulación. De esta manera el émbolo recorre una distancia mayor para comprimir el resorte, antes de destapar el pasaje por donde deriva el aceite para aliviar la presión.

Circuito de Lubricación
El aceite succionado por la bomba se dirige hacia una galería ubicada en el cuerpo del block. Este conducto tiene pasajes conectados a las bancadas del cigüeñal. Luego el aceite continua su desplazamiento por un pasaje ubicado dentro de los brazos del cigüeñal hasta alcanzar los puños de biela.
Desde la galería principal también se hace llegar lubricante a los descansos del eje de levas

Bujias



Partes

1) Terminal roscado donde conecta la bujia.Algunas bujias traen esta parte separada,(traen dos terminales algo diferentes entre ellas),pero solo una, facilita el acople con el cable.
2) Esta figura, que podemos llamar costillas, evitan que la corriente brinque en tiempo humedo.
3) Esta parte, es el aislador de ceramica, que debe resistir mas de 40,000 voltios, asi como choques termicos.La parte interna esta expuesta a temperaturas de combustion de 2,500 grados; mientras que la parte externa puede estar expuesta a temperaturas bajo cero.
4) Esta parte del cuerpo metalico, sirve para aplicar la llave hexagonal, que la afloja o ajusta en su posicion en la cabeza (culata). la medida puede ser 5/8 o 13/16 pulg.
5) Esto sigue siendo el cuerpo metalico
6) Cabeza [culata]
7) Conducto de agua
8) Electrodo Central
9) Junta que impide la fuga de gases entre el aislador y el cuepo
10) Elemento de resistencia, que reduce la interferencia con radio y tv [no todas las bujias lo traen]
11) Huacha [junta]
12) Punta del aislador
13) La rosca varia entre 10 y 18 mm
14 Electrodo Central
15) Electrodo lateral

Cilindros



El cilindro de un motor es el recinto por donde se desplaza un pistón. Su nombre proviene de su forma, aproximadamente un cilindro geométrico.
En los motores de combustión interna tales como los utilizados en los vehículos automotores, se dispone un ingenioso arreglo de cilindros junto con pistones, válvulas, anillos y otros mecanismos de regulación y transmisión, pues allí es donde se realiza la explosión del combustible, es el origen de la fuerza mecánica del motor que se transforma luego en movimiento del vehículo.
El cilindro es una pieza hecha con metal fuerte porque debe soportar a lo largo de su vida útil un trabajo a alta temperatura con explosiones constante de combustible, lo que lo somete a un trabajo excesivo bajo condiciones extremas. Una agrupación de cilindros en un motor constituye el núcleo del mismo, conocido como bloque del motor.
Hay motores desde un cilindro, como las motosierras y algunas motocicletas, hasta motores de 12 o 16 cilindros en automóviles, camiones y aviones.
El diámetro y la carrera del cilindro, o mejor la cilindrada, tienen mucho que ver con la potencia que el motor ofrece, pues están en relación directa con la cantidad de aire que admite para mezclarse con el combustible y que luego explota, generando con ello el movimiento mecánico que finaliza con el desplazamiento del vehículo hacia otra posición.


Camisa del cilindro
En algunos motores el cilindro es constituido por una "camisa" que nada más es que un tubo cilíndrico colocado en el bloque del motor y que posibilita la circulación de agua en su vuelta, así como una fácil sustitución en caso de desgaste. Las medidas internas de la camisa del cilindro vienen dadas normalmente por el fabricante, pero pueden ser rectificadas en caso de gripaje, siempre que el material utilizado para su fabricación no sea nicasil.

Tapa de cilindros o culata




Flujo de Culatas para Competencia
Cuando la válvula de admisión se cierra, el flujo de admisión es interrumpido en forma súbita. La inercia del aire produce una presión adicional debido al agolpamiento de las moléculas del gas. Esta presión genera un onda (pulso a velocidad del sonido), que se aleja del cilindro pero sólo llega hasta el punto donde la culata se conecta al múltiple de admisión. En este lugar la onda debe invertir su dirección y desplazarse hacia el cilindro.
Si el pasaje de la culata tiene el largo apropiado, entonces la onda de presión llegará de vuelta justo en el momento que abre nuevamente la válvula. Esto es una ayuda cuando se requiere mejorar la eficiencia de motor. Sin embargo, la modificación de culata para conseguir este efecto y con ello una mejora en la alimentación opera en un rango estrecho de revoluciones. Un pasaje de admisión con su largo optimizado para 6.000 rpm. es diferente a uno de 4.000 rpm. Antes de optimizar el largo de los pasajes de admisión es necesario determinar la velocidad del motor a la cual se desea obtener el mejor rendimiento volumétrico.

Flujómetro para Culatas de Competencia
El equipo que permite hacer una lectura de la condición aerodinámica de los pasajes de admisión (flujómetro), mide la resistencia al flujo de aire. La máquina sopla o "succiona aire" a través de los ductos y basa sus mediciones en el valor de las variaciones de presión que se producen. Si el flujómetro indica una presión mayor en los pasajes, cuando el gas se desplaza a través de el, significa que la resistencia al flujo es menor y por consiguiente es más eficiente.

El flujómetro es necesario para obtener la información confiable que permita realizar modificaciones en forma científica de los pasajes de admisión. Esmerilar la superficie interna para acrecentar el diámetro no siempre trae beneficio. Los datos registrados por el flujómetro son analizados mediante programas de computador que arrojan en sus resultados las medidas y características que deben tener los pasajes para obtener la resistencia al flujo que genere una presión de alimentación adecuada.

Culatas de Carrera
No solamente se debe considerar la velocidad lineal de flujo, en la puesta punto de la culata de carrera. La mezcla recorre el sistema de admisión girando en forma de torbellino. Los pasajes de admisión contribuyen a mantener el movimiento giratorio del aire. Los medidores de turbulencia determinan el comportamiento del gas frente a la resistencia que recibe durante su avance.


Para mejor rendimiento de motor el aire gira en forma paralela al cilindro (torbellino), es decir su eje de giro es perpendicular al pistón y al mismo tiempo rueda en dirección hacia la cabeza del émbolo (caída).
El aire se desplaza en dirección al pistón y luego cuando se inicia la carrera de compresión forma un torbellino que se aleja favoreciendo la velocidad con que se queman los gases. El fenómeno de aceleración interna de la mezcla mejora la tolerancia a la detonación y permite que el motor funcione con menos avance de encendido. Esto último, facilita que el pistón se desplaze por unos milímetros más en su carrera de compresión antes que la fuerza de expansión de los gases se oponga.
Los efectos de torbellino y caída, mejoran la potencia de motor sin aumentar el consumo de combustible. Sin embargo, el efecto de torbellino y caída disminuyen la velocidad lineal que puede alcanzar la mezcla. Un buen sistema de admisión combina apropiadamente torbellino, caída y velocidad lineal.

En motores con relación de compresión menor a 12,5 es conveniente utilizar la turbulencia como forma de mejorar la eficiencia. Sin embargo, para relaciones mayores a 12,5 tiene mayor importancia la velocidad lineal de los gases.

APRIETE DE CULATA

Sujeción de Piezas Mediante Pernos

Disponer de componentes de motor de buena calidad, no asegura un buen resultado hasta que las piezas no son unidas con la fuerza adecuada. En este sentido, los pernos de apriete de culata y la tensión que son capaces de ejercer para mantener la cabeza de cilindro atada al block es tan importante como los componentes mismos. Es por eso que la calidad del material de los pernos, su técnica de apriete y las reglas de su uso, deben considerarse como muy importantes.

El Perno es un Resorte
Si bien un perno no es lo que normalmente identificamos como resorte, en la práctica tiene características similares. Cuando está con su apriete recomendado se encuentra en fase elástica. Es decir, si lo soltamos, debiera disminuir su longitud. Un perno que ha sido apretado más allá de lo recomendado, supera su rango de elasticidad y se alarga definitivamente, impidiendo que la tensión que ejerce entre las piezas sea la adecuada. Un perno suelto es tan inapropiado como un perno alargado. Normalmente los pernos de culata no deben utilizarse 2 veces. Deben ser reemplazados por nuevos cada vez que se desmonta la culata.

Empaque de Culata
Otro componente importante en la unión de bloque y culata es la empaquetadura. Si es de buena calidad deberá tener la cualidad que le permite sellar con el motor frío y también caliente. Un torque de pernos adecuado no asegura el sello entre las piezas.

Como Apretar la Culata
Cada fabricante indica en sus manuales como realizar esta operación. Sin embargo, cuando no está disponible dicha información se recurre primeramente a identificar la clase de perno y luego a dar apriete según la tabla universal de torque estándar. Para realizar este trabajo se utilizan las llaves dinamométricas o de torque. Existen diversos tipos: mecánicas, hidráulicas y neumáticas. La tecnología más moderna utiliza un sensor de ultrasonido para saber la tensión real del perno, cuando está siendo apretado.

Arbol de levas




Introducción
Fundamentalmente, cuanto mayor es la cantidad de aire que penetra en el cilindro, mayor será la potencia que desarrolla el motor, por eso es fundamental el sistema de distribución que es el encargado regular los tiempos del funcionamiento del motor. La distribución (respiración) del motor va estar controlada por el árbol de levas que es el elemento fundamental junto con las válvulas.



Cuanto más rápido gira un motor, más difícil resulta llenar los cilindros, puesto que las válvulas abren y cierran mucho más deprisa. Lo ideal es que la válvula de admisión se abra un poco antes del inicio de la carrera de admisión, y la de escape un poco antes de iniciarse la carrera de escape, para ayudar así al vaciado y llenado de los cilindros. El inconveniente proviene de que el momento óptimo de apertura de las válvulas es diferente para cada régimen del motor, por lo que resulta imprescindible sacrificar rendimiento en todos los regímenes de giro para obtener un resultado aceptable también en todos los regímenes de giro. Lo que hace la distribución variable es precisamente cambiar el momento de apertura y cierre de las válvulas en función del régimen del motor. Los sistemas más sofisticados también pueden controlar el tiempo durante el que la válvula permanece abierta
A la hora de cambiar los tiempos de distribución tenemos que hacer una serie de consideraciones sobre los sistemas de distribución en general:

Sincronización de las válvulas
En la figura inferior se ilustra un diagrama de distribución así como la apertura de las válvulas y el llamado "cruce de válvulas". Hay que destacar los siguientes puntos:
- La válvula de admisión debe abrirse antes del P.M.S., es decir, antes de que el pistón empiece a descender en el tiempo de admisión.
- La válvula de admisión permanece abierta mucho después del P.M.I., (en plena fase de compresión) para aprovechar la velocidad de los gases entrantes, lo cual ayuda a introducir una cantidad adicional de la mezcla de aire y combustible en el cilindro.
- La válvula de admisión regula el rango de revoluciones del motor. Si esta se cierra mas tarde, entra mas combustible en el cilindro y, por lo tanto, las revoluciones aumentan.
- El punto de cierre de la válvula de admisión también determina la relación de compresión efectiva, opuesto a lo que ocurre con la relación de compresión estática. Si la válvula se cierra mas tarde, la compresión real del motor será menor.
- La válvula de escape debe abrirse mucho antes de que termine el tiempo de explosión para liberar la presión de los gases en expansión que están en el cilindro antes de que el pistón suba en el tiempo de escape. La potencia del motor no se ve afectada por el hecho de que las válvulas de escape se abran en ese punto, ya que la mayor parte de la potencia de los gases en explosión ha sido transmitida al pistón durante el tiempo de explosión. La válvula de escape debe estar casi totalmente abierta en el momento en el que pistón alcance la velocidad máxima. De esta manera, no hay resistencia al movimiento causada por la presión del gas de admisión, la cual produciría una perdida de bombeo.
- La leva mantiene abierta la válvula de escape pasado el P.M.S. En regímenes elevados, la inercia del gas que sale del cilindro crea un vacío tras de si, absorbiendo más mezcla de admisión. Al vaciar al máximo el cilindro de gases de escape, aumenta la capacidad para alojar la mezcla fresca de aire y combustible, aumentado así la potencia del motor.



Cruce de válvulas
El periodo de cruce de válvulas tiene lugar en el inicio del tiempo de admisión, cuando la válvula de admisión ya esta abierta y la de escape no se ha cerrado por completo. Los motores de serie tienen un cruce de válvulas de 15 a 30 grados de giro del cigüeñal. En el ejemplo de la figura superior la magnitud del cruce es de 20 grados. Los árboles de levas de los vehículos de carreras tienen cruces de válvulas que van de 60 a 100 grados. Un cruce adicional proporciona un llenado de cilindro mas eficaz a altas revoluciones, pero produce un vacío en el motor mas bajo, así como una mayor pobreza en el rendimiento en los bajos regímenes, en la calidad de marcha en ralentí y en la economía de combustible a baja velocidad.
Si la válvula de admisión se abre demasiado pronto, la calidad de marcha en ralentí se deteriora, mientras que el rendimiento en regímenes elevados no mejora demasiado. La velocidad máxima del pistón en el tiempo de admisión se alcanza antes de la apertura máxima de válvula, por lo que si la válvula se abre antes, podría mejorar la respiración del motor. El factor del cruce de válvulas que afecta al rendimiento en regímenes elevados es el cierre de la válvula de escape. De hecho, aumentar el tamaño de la válvula de escape y su orificio correspondiente no suele considerarse demasiado adecuado para la obtención de mas potencia, ya que la válvula de escape limita en mayor medida el flujo procedente del cilindro a medida que se cierra.
Un cruce elevado de válvulas puede generar problemas de holguras entre la válvula y el pistón, es decir, que podrían llegar a tocarse. La elevada alzada de las válvulas no causa este problema, ya que el pistón esta en una posición baja dentro del cilindro cuando la válvula se abre al máximo.
Un cruce válvulas mas reducido aumenta la presión en el cilindro a revoluciones mas bajas.
Los diseñadores de árboles de levas intentan minimizar el cruce de válvulas al tiempo que procuran maximizar el rendimiento en regímenes elevados.

Forma de levas
Las levas están formadas por un circulo base y una cresta que esta flanqueada por dos costados mas o menos rectos. Las levas tienen un contorno preciso. Su forma constituye una solución de compromiso, ya que el perfil de leva que mejora el rendimiento a altas revoluciones impide un funcionamiento optimo a bajas revoluciones. Esto se debe a la inercia de los gases. La inyección de aire mas grande tiene lugar cuando la velocidad del pistón alcanza su nivel máximo, que ocurre cuando el diferencial de presión entre el interior y el exterior llega a su máximo.
Los dos factores que caracterizan el contorno de la leva son la alzada y el ángulo de apertura. La alzada es la altura a la que la leva eleva el taqué, mientras que el ángulo de apertura es el numero de grados del giro del cigüeñal durante los cuales la válvula esta fuera de su asiento.



La mayor parte de los árboles de levas están diseñados para dividir el cruce de válvulas, es decir, mantener la misma apertura de las válvulas de admisión y de escape en el P.M.S. Si la válvula de admisión está mas abierta en el P.M.S. que la de escape, se dice que el árbol de levas esta "adelantado", mientras que si esta ultima es la que esta mas abierta que la primera, el árbol de levas esta "retrasado". Un árbol de levas de patrón único tiene levas con la misma forma en ambos costados (flanco de cierre y flanco de apertura). Un diseñador de arboles de levas puede efectuar un ajuste fino en el funcionamiento del motor cambiando el punto en el que se abre o se cierra una válvula. Las levas cuyos flancos presentan formas distintas se consideran "asimétricas".

Arboles de levas de alto rendimiento
Se instalan arboles de levas de alto rendimiento sin tener en cuenta que esto conlleva otras modificaciones necesarias. Estos árboles de levas deben ir acompañados de muelles mas fuertes para que los componentes de . Tenga cuidado de no llegar a la compresión total del muelle, en el caso de que el árbol de levas nuevo produzca una alzada de válvula demasiado elevada para la altura del muelle. En tal caso, lo mas conveniente será utilizar doble muelle (uno interno y otro externo). Cuando se alcanza al nivel máximo de la alzada de válvula, debe haber una holgura mínima entre las espiras del muelle de 0,25 a 0,30 milímetros. Otro inconveniente que puede haber es que la alzada de la válvula esta limitada por la parte superior de la guía de válvula y la holgura entre las válvulas y la parte superior del pistón, hay que evitar que lleguen a tocarse, si se produce este hecho, habría que rectificar dichos elementos.



El cambio del árbol de levas por otro de alto rendimiento suele ir acompañado de modificaciones o cambios en el colector de admisión, escape y sistema de alimentación de combustible (carburador, inyección).

Cómo Opera el Eje de Levas para Competencia?
Se abre la vávula de admisión antes que finalice la carrera de escape, (avance de apertura de admisión). En ese momento la inercia de los gases quemados que aun salen por el escape, contribuyen a que la mezcla fresca ingrese con rapidez al cilindro, (barrido).

Los grados de giro durante el cual la válvula de escape se mantiene abierta en carrera de admisión se conoce como retraso de cierre de escape.

Se cierra la válvula de admisión después de iniciada la carrera de compresión, (retraso de cierre de admisión). En el inicio de la carrera de compresión aun existe vacío y la mezcla fresca sigue llenando el cilindro por algunos grados más de giro del cigüeñal.

Se abre la válvula de escape antes que termine la carrera de expansión, (avance de apertura de escape). Al final de la carrera de expansión aun queda presión en el cilindro. Al abrir la válvula de escape anticipadamenete se sacrifica un poco de fuerza pero se reduce la contra presión que se opone a la subida del émbolo en su carrera de escape.

Modificación de Levas
Cuando la alzada de los camones del eje de levas aumentan se consigue una apertura de válvulas mayor y con ello una disminución de la resistencia al flujo de los gases. Sin embargo el aumento de alzada trae consigo la generación de vibraciones en el tren de mando de las válvulas que altera el sincronismo del motor. Para contrarrestar este problema, el eje de levas se diseña de manera que las válvulas abran y cierren lo más lentamente posible. Para ello se requiere extender al máximo la permanencia de apertura, es decir el largo del perímetro del camón.
El cruce de válvulas permite extender el tiempo de apertura por algunos grados más de giro, disminuyendo así la velocidad angular con que el alzaválvulas se desplaza sobre la superficie de la leva.

Cigueñal






Un cigüeñal es un eje con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela - manivela, transforma el movimiento rectilíneo alternativo en rotatorio y viceversa.
Los cigüeñales se utilizan extensamente en los motores alternativos, donde el movimiento lineal de los pistones dentro de los cilindros se trasmite a las bielas y se transforma en un movimiento rotatorio del cigüeñal que, a su vez, se transmite a las ruedas y otros elementos como un volante de inercia. El cigüeñal es un elemento estructural del motor.
Normalmente se fabrican de aleaciones capaces de soportar los esfuezos a los que se ven sometidos y pueden tener perforaciones y conductos para el paso de lubricante. Hay diferentes tipos de cigüeñales; los hay de tres apoyos, de cinco apoyos, etcétera, dependiendo del número de cilindros que tenga el motor.+

Sistema de escape






Control de Sonido en Motores
El sonido del motor es una onda formada por pulsos alternativos de alta y baja presión que se pueden amortiguar con un silenciador de escape. Cuando la válvula de escape se abre y el gas se precipita hacia el múltiple, golpea la masa de gas de menor presión que está detenida allí. Esto genera una onda que se propaga hasta la atmósfera por el sistema de escape. La velocidad de la onda es mayor que la del propio gas.

Componentes del Silenciador
En un silenciador de escape estándar, el gas ingresa a el y se desplaza hasta el fondo del tubo de entrada para luego ser reflejado hacia la cámara principal. Posteriormente sale atravezando pequeñas perforaciones practicadas en el tubo de salida del silenciador. Al mismo tiempo, la cámara principal se mantiene conectada con otro compartimento denominado resonador.

Escapes Sónicos
El volumen del sonido depende de la amplitud de onda. Esta varía según el valor de la presión que lo genera. A mayor amplitud de onda mayor volumen. Para aminorar el volumen del sonido sin afectar el desempeño del motor se anulan las ondas que salen del motor con otras que vienen reflejadas desde el silenciador (interferencia destructiva). Si una onda está en máxima presión y se encuentra con otra similar en mínima presión se contrarrestan. Existen varios diseños básicos para conseguir el efecto amortiguador. Los fabricantes muchas veces incorporan varios de ellos en un mismo silenciador

Silenciadores
expancion

absorciion

interferencia

resonancia

resistencia

Embrague





Los embragues son uno de los componentes de los vehículos sujetos a las mayores exigencias en su funcionamiento. La demanda continua de sus servicios, hace que su papel resulte fundamental en el funcionamiento de los automóviles. Por todo ello, estos integrantes mecánicos se deben utilizar y mantener con el debido cuidado para evitar desgastes prematuros. Un embrague puede durar muchos años o apenas unos kilómetros según sea el trato que reciba. A continuación reproducimos algunos datos técnicos y consejos para un mejor conocimiento del embrague y su cuidado.

El embrague del vehículo se encuentra ubicado en el flujo de fuerza existente entre el motor y la caja de cambios. Esta tiene como función primordial acoplar la masa del vehículo al motor durante el arranque de forma uniforme y libre de sacudidas, así como interrumpir cuando se le requiere, el flujo de fuerza durante la marcha para efectuar el correspondiente cambio de velocidades.

DISEÑO

Un embrague completo consta básicamente de:

* Volante motor
* Plato de presión
* Disco de embrague
* Cojinete de empuje


Plato de presión: Los platos de presión con muelles helicoidales ofrecen la ventaja constructiva de poder variar fácilmente la fuerza de la presión, seleccionando grupos de muelles de diferente efecto. Embragues de diafragma son corrientes en turismos y cada vez se emplean más en vehículos industriales, ya que no son sensibles a números de revoluciones elevados y son de menor espesor. La relación entre la fuerza de presión y de desembrague es más favorable.

Discos de embrague: El modelo más simple de un disco de embrague, moyu y chapa portante con dos anillos de forro remachados, se aplica sólo en casos especiales. Para mejorar las propiedades de puesta en marcha es común un amortiguamiento axial de las superficies de fricción. Amortiguadores de oscilaciones de torsión cada vez más complejos tienen la función de reducir los ruidos de la caja de cambios.

Cojinete de empuje: Existen dos tipos básicos: Guiado de forma central sobre un manguito desplazable. o giratorio en una horquilla de desembrague.

TRANSMISIÓN E INTERRUPCIÓN DE FUERZA

Transmisión de fuerza: El embrague en su función como elemento de unión, transmite el par del motor a la caja de cambios. El plato de presión atornillado al volante presiona al disco de embrague contra el volante (Fig-1). El disco de embrague montado sobre un eje estriado transmite el movimiento giratorio a la caja de cambios. En embrague de diafragma por tracción (Fig-2), el cojinete de empuje está fijo en el diámetro interior a las lengüetas del diafragma. El diafragma se apoya en el diámetro exterior a la carcasa y presiona sobre el plato.

Interrupción de fuerza: El varillaje del pedal embrague presiona el cojinete de empuje contra las lengüetas del diafragma y lo desplaza la distancia prescrita (Fig-3). Ballestas tangenciales tiran al mismo tiempo del plato de presión hasta que se separa del disco de embrague. El disco de embrague se libera (desplazándose en sentido axial); en este momento, se puede efectuar el cambio de velocidad. Al desembragar el cojinete de empuje (Fig-4), se desplaza hacia la caja de cambios y lleva consigo las lengüetas del diafragma. Las ballestas tangenciales separan el plato de presión de los forros del disco de embrague

DISCO DE EMBRAGUE CON AMORTIGUADOR DE TORSIÓN

Cálculo de la capacidad de transmisión: La marcha no uniforme de los motores de combustión, puede ocasionar en determinados estados y números de revoluciones de servicio, fuertes ruidos que se perciben de forma desagradable en la cabina. Estos ruidos son ocasionados en la mayoría de los casos por grupos de engranajes de la caja de cambios, Igualmente, otras piezas de transmisión en el flujo de fuerza pueden oscilar de forma que se produzcan ruidos. Por ésta razón, se aconseja el montaje de un disco de embrague con amortiguación de torsión, cuya construcción permite diversas variantes para ser adaptado a cada tipo de vehículo. El amortiguador de torsión consta de suspensión elástica de torsión y dispositivo de fricción. La suspensión elástica determina el giro sobre el cual el dispositivo de fricción reduce las oscilaciones de forma que no tienen una influencia perturbadora sobre la caja de cambios. Además de eliminar los ruidos, el amortiguador de torsión absorbe los picos de par, con lo cual el tramo de accionamiento se protege y se evita un desgaste prematuro de las piezas motrices.

El embrague de fricción


El embrague de fricción está formado por una parte motriz (volante motor), que transmite el giro a la parte conducida, usando el efecto de adherencia de ambos componentes, a los cuales se les aplica una fuerte presión que los acopla fuertemente.


El eje primario de la caja de velocidades se apoya en el volante de inercia del motor por medio de un casquillo de bronce. Sobre este eje se monta el disco de embrague que es aplicado fuertemente contra el volante motor por el palto de presión, también conocido como maza de embrague. La maza de embrague es empujada por los muelles que van repartidos por toda su superficie. Al pisar el conductor el pedal de embrague, un mecanismo de palanca articulada desplaza el cojinete de embrague que mueve unas patillas que, basculando sobre su eje, tiran de la maza de embrague que libera al disco impidiendo que el motor le transmita movimiento, haciendo que tampoco llegue a la caja de velocidades aunque el motor esté en funcionamiento.




De que esta hecho?


Como el disco de embrague debe transmitir a la caja de cambios y a las ruedas todo el esfuerzo de rotación del motor sin que se produzcan resbalamientos. Se intuye que sus forros deban de ser de un material que se adhiera fácilmente a las superficies metálicas y que sea muy resistente al desgaste y al calor. El más empleado es el formado en base de amianto impregnado de resina sintética y prensado en armazón de hilos de cobre, a este material se le llama ferodo. Los forros de ferodo se sujetan al disco mediante remaches, cuyas cabezas quedan incrustadas en el mismo ferodo por medio de avellanados practicados en él, ya que si rozasen con el volante motor y con el plato de presión, podrían dañarlos.


El dimensionado del disco de embrague es un factor primordial que va en función del par a transmitir y del esfuerzo resistente, es decir, del peso del vehículo en cuestión. En este dimensionado se mencionan los valores del diámetro exterior y del espesor del conjunto de guarniciones.


Para otorgar flexibilidad al acoplamiento y conseguir una unión progresiva en las maniobras de embragado y desembragado, evitando los tirones, se dispone el disco de forma que el cubo estriado o núcleo (A), que se monta sobre el eje primario de la caja de cambios, se une al plato (B) al que se fijan los forros, por medio de los muelles (C). El plato (B) está provisto de unos cortes radiales (D) por toda su periferia y cada una de la lengüetas (E) formadas se doblan en uno u otro sentido, como se muestra en la figura de al lado.
Además, los discos de ferodo se unen al plato, que se enlaza con el cubo por medio de los muelles que están repartidos por toda la circunferencia de unión. De esta forma, la transmisión del giro desde el ferodo al núcleo se realiza de forma elástica, mediante los muelles.


Sin embargo, a pesar de este dispositivo de elasticidad del disco, se debe embragar progresivamente y con lentitud, para que exista resbalamiento al principio con el fin de que el movimiento del motor se transmita progresivamente a las ruedas. Ya que si se pretende acoplar bruscamente dicho movimiento se produciría el calado del motor, debido a que es mucha la potencia que debe de desarrollar para vencer la inercia y poner en marcha el vehículo.

El disco de embrague debe girar cada vez más rápido hasta alcanzar la velocidad de giro del motor. Si al terminar la maniobra de embraga y al soltar el pedal el disco sigue patinando se quemaría por el calor producido en el rozamiento, diciéndose entonces que el embrague patina.


Mecanismo de embrague


El acoplamiento del disco de embrague contra el volante de inercia del motor se realiza por medio de un conjunto de piezas que recibe el nombre de mecanismo de embrague. De este conjunto forma parte el plato de presión, también llamado maza de embrague, que es un disco de acero en forma de corona circular, que se acopla al disco de embrague por la cara opuesta al volante motor. Por su cara externa se une a la carcasa con interposición de muelles helicoidales que ejercen la presión sobre el plato para aplicarlo fuertemente contra el disco.


La carcasa de embrague constituye la cubierta del mismo, y en ella se alojan los muelles y las patillas de accionamiento, a través de los cuales se realiza la unión con la carcasa y el plato de presión. Dicha carcasa se une al volante motor por medio de tornillos.
Los muelles realizan el esfuerzo necesario para aprisionar al disco de embrague entre el volante motor y la maza de embrague. Normalmente se disponen de seis muelles helicoidales dispuestos de manera circular consiguiendo así una presión uniforme sobre toda la superficie de la maza de embrague.

El embrague de diafragma


En la actualidad, los embragues convencionales del tipo de muelles y patillas han sido sustituidos por los embragues de diafragma. Estos embragues están constituidos por la carcasa, la maza de embrague que presiona al disco contra el volante motor y por el diafragma, que sustituye a los muelles helicoidales.


El diafragma los constituye un disco delgado de acero con forma de cono, provisto de unos cortes radiales, en el cual puede apreciarse una corona circular exterior y varios dedos elásticos, que hacen la función de las patillas en los embragues de muelles, transmitiendo la presión aplicada a sus extremos de la corona, que actúa sobre el plato de presión sustituyendo a los muelles de los embragues convencionales.


El plato de presión va unido a la carcasa de embrague mediante unas láminas elásticas que lo mantienen en posición y al mismo tiempo permiten el desplazamiento axial necesario para las acciones de embragado y desembragado. A la carcasa también se le une el diafragma por medio de remaches y aros de acero, emplazados ambos en la zona media del anillo circular que conforma el diafragma.


En otros modelos, la fijación del diafragma a la carcasa se realiza por medio de un engatillado, en el cual el diafragma se fija a la carcasa por medio de un engatillado que hace de punto de apoyo para los movimiento que realiza el diafragma durante las acciones de embragado y desembragado.


Las principales mejoras del embrague de diafragma frente al embrague convencional de muelles son:

  • Resulta más sencilla su construcción.
  • La fuerza ejercida sobre el plato de presión está repartida de manera más uniforme.
  • Resulta más fácil de equilibrar.
  • Se requiere un menor esfuerzo en la acción de desembragado.

Accionamiento del embrague


Para realizar las maniobras de embrague, se dispone de un sistema de mando cuyo accionamiento puede ser puramente mecánico o bien hidráulico.


Los sistemas de accionamiento mecánico consisten en un cable de acero que va unido desde el pedal de embrague por un extremo, hasta la horquilla de mando del embrague en el otro extremo. Con este sistema se consigue que al pisar el pedal de embrague se tire de la horquilla, desplazando el tope de embrague produciéndose así el desembragado.


En posición de reposo, es decir, con el pedal suelto, el tope de pedal y el muelle del que va provisto determinan la altura de dicho pedal. En estas condiciones, la horquilla se mantiene retirada, junto con el tope, a una cierta distancia que se conoce como guarda de embrague y puede ser regulada con un tornillo.
En el sistema clásico de mando del embrague mediante cable, pueden establecerse dos tipos: los de apoyo constante del cojinete de empuje y los de guarda en el cojinete de empuje, como el sistema mencionado anteriormente, en los cuales el cojinete de empuje se mantiene retirado del diafragma en la posición de reposo. Esto sucede gracias a un muelle antagonista acoplado a la horquilla de desembrague.
En el sistema de mando con apoyo constante del cojinete de empuje, se suprime la guarda de desembrague, con lo cual el recorrido en vacío del pedal se elimina.


Un sistema muy usado actualmente es el de mando del embrague con recuperación automática del juego de acoplamiento. Este sistema va provisto de un trinquete que se mantiene enclavado en un sector por la acción de un muelle, de manera que cuando se pisa el pedal, el trinquete obliga al sector a seguir su movimiento tirando del cable. El cable va unido por su extremo opuesto a la horquilla de desembrague, que hace bascular aplicando el tope de embrague contra el diafragma para ejecutar la maniobra de desembrague. Al soltar el pedal, la acción del muelle sobre el sector dentado, tiende a mantener el cable tensado por resbalamiento del trinquete en los dientes de sierra del sector. Con este sistema se consigue que el juego de acoplamiento entre el cojinete de empuje y el diafragma quede absorbido de forma automática de manera que se va produciendo el desgaste del disco de embrague.


Las longitudes de la horquilla de desembrague y del pedal, con respecto a sus correspondientes ejes de giro, están determinadas de forma que el accionamiento del embrague resulte cómodo y el conductor no tenga un esfuerzo excesivo para ejecutar las maniobras.


Para facilitar las maniobras de embragado y desembragado, en algunos vehículos se adopta un sistema de mando hidráulico. En este sistema el pedal de embrague actúa sobre el émbolo de un cilindro emisor, para desplazarlo en su interior impulsando fuera de él el líquido que contiene, enviándolo al cilindro receptor, en el que la presión ejercida producirá el desplazamiento de su pistón que, a su vez, provoca el desplazamiento del tope de embrague mediante un sistema de palancas. Si disponemos de los cilindros emisor y receptor de las medidas adecuadas, podemos lograr la multiplicación más adecuada del esfuerzo ejercido por el conductor sobre el pedal

Los embragues automáticos


Los embragues automáticos efectúan las maniobras de embragado y desembragado de forma autónoma sin necesidad de que el conductor deba accionar el pedal de embrague, que se suprime en este tipo de embragues. El cambio de velocidad en la aja de cambios puede lograrse manejando únicamente la palanca del cambio gracias a este tipo de embragues.


De entre la gran variedad de embragues automáticos hay que destacar los embragues centrífugos y los hidráulicos, ya que estos, combinados con una caja de cambios automática, son utilizados actualmente en un gran número de vehículos.

El embrague centrífugo


Actualmente se monta un sistema de embrague provisto de unos contrapesos que, cuando el motor alcanza un determinado régimen de giro, la fuerza centrífuga los empuja hacia la periferia, haciendo que las palancas que van unidas a ellos basculen y hagan presión sobre la maza de embrague. Consiguiéndose así el embragado.
Cuando el motor gira a ralentí los contrapesos ocupan su posición de reposo gracias a la acción de unos pequeños muelles y, con ello, el plato de presión deja en libertad al disco de embrague, consiguiendo el desembragado del motor.


Dado que la velocidad de giro del motor sube en las aceleraciones de forma progresiva, la acción de embragado resulta igualmente progresiva.


Basados en este mismo sistema se montan embragues semiautomáticos. Estos embragues están formados por un sistema de embrague convencional, disco y mecanismo, montados sobre la cara frontal de un tambor, que en su interior recibe el plato provisto de zapatas en su periferia.
El plato está unido al volante de inercia del motor y, por tanto, gira con él. Las zapatas son capaces de deslazarse hacia fuera por la acción de la fuerza centrífuga, haciendo solidario el tambor con el giro del plato. Con esta disposición se consigue que siempre que el motor alcance un determinado régimen de giro se consiga la acción de embragado del motor.

Embrague electromagnético


Todos los sistemas de embrague descritos hasta ahora basan su funcionamiento en los efectos de adherencia entre dos piezas de distinto coeficiente de rozamiento. A causa de ese frotamiento estos embragues pueden resultar ruidosos y padecen un desgaste. Estos inconvenientes se solucionan gracias al uso de embragues electromagnéticos e hidráulicos, aunque generan otros inconvenientes propios.
El sistema de embrague electromagnético esta constituido por una corona de acero que se monta sobre el volante de inercia del motor. En el interior de esta corona va alojada una bobina, que al pasar la corriente eléctrica a través de ella produce un campo magnético en la zona del entrehierro formado entre la corona y el disco de acero.


Dicho disco va montado en el primario de la caja de cambios por medio de un estriado, sustituyendo al disco de embrague convencional. El espacio existente en el interior de la corona se cierra con chapas de acero, y se rellena con polvo magnético, que se aglomera en el entrehierro por la acción del campo magnético creado por la bobina, haciendo solidarios a la corona con el disco. De esta forma, cuando pasa corriente por el arrollamiento de la bobina se produce la aglomeración del polvo magnético consiguiendo el embragado del motor. Por el contrario, si no pasa corriente por la bobina el polvo magnético no se aglomera en el entrehierro, lo que permite girar en vacío a la corona sin arrastrar el disco. Con lo cual el motor permanece desembragado.
En el instante en que comienza a pasar corriente por la bobina se inicia la aglomeración del polvo magnético, que tarda un cierto tiempo en completarse, además del retardo a la aparición del flujo magnético que se produce en todas las bobinas. Este efecto consigue que el embrague sea progresivo.


El embrague automático servocomandado


Muchos modelos de vehículos montan actualmente un embrague de tipo automático pilotado, donde las acciones de embragado y desembragado se efectúan automáticamente, sin que el conductor tenga que utilizar el pedal, con lo cual éste se queda suprimido.


Éste tipo de embrague automático está formado por un embrague centrífugo, que se une al volante de inercia del motor, al que se le acopla mediante un mecanismo de rueda libre un sistema de embrague convencional. La rueda libre no permite girar al disco del embrague centrífugo a mayor velocidad que el motor, pues en cuanto esto ocurre la rueda libre se bloquea haciendo a los dos embragues solidarios.
El embrague centrífugo actúa en función de las revoluciones del motor, que realiza las acciones de embragado y desembragado a partir de un cierto valor de giro. El embrague convencional es gobernado por un mecanismo servoneumático activado por una electroválvula, que es mandada por la palanca del cambio de velocidad y por el pedal del acelerador.


La marcha del vehículo partiendo de la situación de parado comienza alrededor de las 1.000 revoluciones del motor, mientras que a partir de las 1.500 vueltas del motor ya puede ser transmitido todo el par motor, concluyendo por ello todo deslizamiento y permaneciendo conectado el embrague centrífugo durante todo el tiempo de marcha.


Con el vehículo en marcha, al accionar la palanca del cambio de velocidad se activa una electroválvula capaz de poner en comunicación el servo con la depresión creada por el motor. Con ello se consigue el accionamiento de la palanca de desembrague produciéndose el desembragado del motor. En cuanto se lleva la palanca del cambio a la posición de una nueva velocidad se desactiva la electroválvula interrumpiendo la comunicación entre el servo y la depresión producida por el motor, con lo cual se logra el embragado. Esta maniobra se realiza de forma progresiva en función de la posición del pedal del acelerador, que influye en la depresión transmitida al servo, lo que permite una conexión suave y gradual en el paso a marchas inferiores y una conexión rápida sin excesivos deslizamientos en las maniobras de cambio de marchas en las aceleraciones.


El embrague pilotado electrónicamente


En diferencia al embrague automático servocomandado el embrague pilotado electrónicamente es gobernado por un sistema electrónico de gestión que controla un circuito hidráulico de mando de la palanca de desembrague. Dicho módulo de gestión electrónica recibe información sobre la posición de la palanca de cambios y del pedal del acelerador, así como la velocidad del vehículo y el régimen del motor.
Con el vehículo parado y el contacto desconectado el embrague siempre se encuentra en posición de embragado, independientemente si está en punto muerto o no. Si se encuentra una velocidad metida no es posible arrancar el vehículo. Para sacar la velocidad el sistema está provisto de un captador de esfuerzo situado sobre la palanca del cambio que envía una señal al calculador electrónico que acciona el embrague. Permitiendo así sacar la velocidad y poder ser arrancado el motor.


Al poner en marcha el vehículo y accionar la palanca del cambio de velocidades, un captador de esfuerzo manda una señal al módulo electrónico, que activa el embrague permitiendo la selección de esta marcha. El arranque del vehículo se produce de manera progresiva con la posición del acelerador.


Con el vehículo circulando a gran velocidad el desembrague se produce cuando el módulo recibe señales del captador de esfuerzo de la palanca del cambio y el captador de la posición del acelerador indica que se ha levantado el pie del acelerador. Al colocar la palanca del cambio en la velocidad deseada el captador de la posición de la palanca del cambio envía una señal al módulo que autoriza el embragado al acelerar.
La gestión electrónica del embrague mejora considerablemente las prestaciones y manejo del cambio que un embrague convencional, además que la conducción del vehículo es mucho más agradable el disco de embrague se desgasta bastante menos.


El embrague hidráulico


Los embragues convencionales de fricción tienen el inconveniente de que su funcionamiento es un poco ruidoso y se producen desgastes. Estos pequeños defectos se evitan con el uso de embragues hidráulicos.
El funcionamiento de un embrague hidráulico es parecido a dos ventiladores, uno enchufado y otro no, la corriente de aire creada incide en las aspas del desenchufado y lo gira. Así se logra transmitir el movimiento sin que haya rozamiento, y con ello se evitan los desgastes.


En los embragues hidráulicos el medio de transmisión del movimiento es el aceite. Una bomba centrífuga recibe el giro del motor y envía el aceite a presión hacia una turbina en la que está acoplado el eje primario de la caja de velocidades. La energía cinética de cada partícula choca contra las aletas de la turbina, que produce una fuerza que tiende a hacerla girar. El aceite resbala por las aletas de la turbina y es devuelto hacia la bomba centrífuga, donde esta lo envía hacia la periferia, volviéndose a repetir el ciclo.
Cuando el motor gira a poco régimen la velocidad con que salen las partículas de la bomba es muy pequeña, y por tanto la energía cinética transmitida a la turbina es muy débil para vencer todo el par resistente opuesto por el peso del vehículo. En esta situación la turbina permanece sin girar y hay un resbalamiento total entre la bomba y la turbina.


Conforme se va aumentando el régimen de giro del motor el aceite va tomando velocidad e incide con mayor energía cinética sobre la turbina, lo que produce que el resbalamiento entre bomba y turbina consiga hacer progresivo al embrague.
Cuando el motor desarrolla su par máximo, el aceite impulsado por la bomba incide con gran fuerza sobre la turbina y ésta es arrastrada a gran velocidad, sin que apenas exista resbalamiento entre ambas. Por supuesto, la turbina entra en acción cuando el par transmitido por la bomba es superior al par resistente. Siempre existe un pequeño resbalamiento entre bomba y turbina que, con el motor con régimen alto, debe estar aproximadamente en el 2%.

Carburador




Tipos de carburadores
Existen muchas marcas y tipos de carburadores, entre las distintas marcas de carburadores están: Solex, Zenith, Weber, Stromberg, Carter, Irz, brosol etc.
Según la forma y disposición de sus elementos constructivos, se pueden clasificar en los siguientes grupos:

Carburadores de difusor fijo
Carburadores de difusor variable
Carburadores dobles
Carburadores de doble cuerpo (escalonados


Carburadores de difusor fijo
Este tipo de carburador al que pertenecen la mayoría de los modelos de todas las marcas (excepto los carburadores S.U) se caracterizan por mantener constante el diámetro del difusor o venturi, con lo cual la velocidad del aire y la depresión creada a la altura del surtidor son siempre constantes para cada régimen del motor, en función de la mayor o menor apertura de la mariposa de gases.
Los diferentes modelos o marcas de carburadores existentes en el mercado, basan su funcionamiento en los principios teóricos ya estudiados en capítulos anteriores, se diferencia esencialmente en la forma de realizar la regulación de la mezcla, empleando uno u otro dispositivo que ya iremos viendo.
La toma de aire en todos los circuitos y la aireación de la cuba se realizan a través del colector principal, asegurando así en todos los pasos de aire, la purificación del mismo por medio del filtro.
Estudiaremos cada marca de carburador por separado en capitulos posteriores del curso.

Se puede hacer otra clasificación dentro de los carburadores de difusor fijo y tiene que ver con la posición del colector de aire y su difusor:

vertical ascendente
vertical descendente o invertido (el mas utilizado)
horizontal o inclinado




Carburadores dobles
El carburador doble utilizado generalmente en vehículos de altas prestaciones y de competición, esta formado por dos carburadores simples, como los ya estudiados unidos en un cuerpo común. Lleva dos colectores de aire y cada uno de los carburadores tiene todos los circuitos correspondientes para la formación y dosificación de la mezcla. Cada uno de los colectores desemboca por separado en un colector de admisión independiente para alimentar con cada uno de los carburadores a la mitad de los cilindros del motor. De esta forma se consigue un mejor llenado de los mismos y un perfecto equilibrio en relación con la mezcla.



Se alimenta de una cuba "común" que suministra cantidades de combustible equivalentes a cada uno de los carburadores. El mando de los mismos se realiza con el acelerador del vehículo, que acciona simultáneamente las dos mariposas de gases, unidas por un eje común.
Para el resto de circuitos (compensación, economizadores, bomba de aceleración y arranque en frío) se adopta el sistema correspondiente a cada tipo o marca de carburador.



Existen motores sobre todo de competición que utilizaban un carburador por cilindro, todos los carburadores sincronizados para abrir y cerrar la mariposa de gases al mismo tiempo. El inconveniente de estos carburadores es que tienen que estar perfectamente equilibrados para suministrar el mismo caudal de mezcla a cada uno de los cilindros del motor.



Carburadores de doble cuerpo o escalonados
Cuando la cilindrada de un motor ronda los 1.5 L. el volumen de mezcla a suministrar para alimentar el motor es apreciable. Debido a esto, nos surgen varios inconvenientes, por una parte nos conviene que el diámetro del difusor sea estrecho para cuando se circula a bajas r.p.m., con objeto de que el aire se acelere y vaporice la gasolina que aspira del surtidor. Pero cuando se necesita potencia, si el difusor es muy estrecho limita el paso de aire por el colector. Para solucionar estos problemas están los carburadores de doble cuerpo, que tienen una sola entrada de aire por un filtro de aire único, también tienen una sola cuba de combustible. y un único sistema de arranque en frío, los demás elementos y circuitos que forman un carburador son independientes.



De los dos cuerpos que forman el carburador, uno es el llamado "principal" (se distingue por tener la mariposa de gases mas pequeña, diámetro menor), proporciona toda la mezcla necesaria al motor mientras el acelerador se pisa hasta un tercio o la mitad de su recorrido; mas a fondo empieza a abrirse ya rápidamente la mariposa del segundo cuerpo (secundario), con lo que se proporciona al motor gran volumen de mezcla para grandes cargas del motor (acelerador pisado al máximo). En este tipo de carburadores el estrangulador para arranque en frío, va montado en el cuerpo principal, en algunos casos, en otros como en la figura superior, lleva mariposa estranguladora en los dos cuerpos..
Estos carburadores, pueden tener los cuerpos de diferentes dimensiones y se aplican a motores de 4 y 6 cilindros.

Constitución y funcionamiento
Este carburador esta formado por dos colectores de admisión unidos por un cuerpo común, con dos surtidores independientes alimentados por una cuba común. En el cuerpo principal, se dispone un difusor de menor diámetro que en un carburador normal, para conseguir, a bajas r.p.m. del motor, una mayor velocidad de aire y, por tanto, una mejor succión de combustible para formar la mezcla. En el segundo cuerpo del carburador (cuerpo secundario), que solo funciona a altos regímenes del motor, se dispone un difusor mas ancho para obtener un mejor llenado de los cilindros para grandes cargas del motor.
Las mariposas de gases (5) y (6) en los dos cuerpos del carburador van sincronizadas en su apertura, de forma que, hasta un determinado régimen de funcionamiento, la mariposa del segundo cuerpo permanece cerrada, por lo que este cuerpo no proporciona mezcla. Pero cuando la mariposa de gases del cuerpo principal alcanza un determinado régimen de funcionamiento (aproximadamente los 2/3 del recorrido), comienza la apertura de la mariposa (6) en el cuerpo secundario. Este carburador empieza entonces su funcionamiento a ralentí, que aporta su mezcla a la del cuerpo principal. A partir de ese momento, se abre la mariposa de gases secundaria sincronizada con el cuerpo principal, pero mas rápidamente que esta, de forma que, con el acelerador pisado a fondo, ambas mariposas están totalmente abiertas.



Moviendo progresivamente el pedal del acelerador (figura inferior), se abre primero la mariposa de gases del cuerpo principal (A), accionada desde la palanca (1) unida a su eje. Llegada a un cierto ángulo de apertura, el tetón tope de arrastre (2) obliga al sector dentado a seguir en su movimiento a la mariposa (A), lo que a su vez implica el comienzo de la apertura de la mariposa del segundo cuerpo (B), cuyo sector engrana directamente con el del primero. A causa de la diferencia de radios de estos sectores, la velocidad con se que abren ambas mariposas es diferente.



Circuito de ralentí
Este circuito con su calibre de mezcla y pasos de by-pass, va dispuesto en el cuerpo principal para la alimentación del motor en vacío. En el segundo cuerpo hay un circuito análogo, pero sin regulador de mezcla, que sirve como paso de transición desde que la mariposa de gases de este cuerpo comienza a abrirse hasta que entra en funcionamiento el surtidor principal del segundo cuerpo.

Sistema compensador
Este sistema para la regulación de la mezcla suele ser de tubo de emulsión. Se instala en cada uno de los surtidores de ambos cuerpos, los cuales regulan por separado la riqueza de la mezcla en cada uno de los circuitos .